Slotted Weights with Hanger

Slotted Weights are used in a variety of applications such as pressure, torque, and tensile strength testing. … Several Cast Iron Slotted Weights may be used together to build up from a minimum weight to a maximum test load. The hanger weight selected should be able to accommodate the total load needed.

Slotted Weights are made of high quality cast iron and are used with Hanger. Slotted Weights are calibrated so that we know the mass value.

Slotted Weights are also manufactured in Newton mass value.

To know more please visit http://www.slotterweight.com

Cast Iron Slotted Calibration Weights & Hangers – M1 Accuracy

The  hanger weight is a weight in itself, that also has its weight Calibrated so that the hanger can be used as part of the overall weight under test,  and will hold a number of Cast Iron slotted weights depending on its usable shaft lengths. The slotted weights are discs with slots in them and are designed to sit on the hanger. Several Cast Iron Slotted Weights may be used together to build up from a minimum weight to a maximum test load.

These weights are used to test force gauges, crane scales or other suspended weighing scales. Cast Iron Slotted Weights are primarily used to calibrate large capacity scales.

Shanker Wire Products Industries (SWPI) Cast Iron Slotted Weights are manufactured from a high quality iron. The surface are free of cracks, pits and sharp edges. All surfaces are smooth and free of scratches, dents and pores. Weights are protected by a durable coat of paint to protect the casting from rusting.

The M1 Cast Iron slotted hanger weights (Newton Cast Iron Slotted Weights, Kilogram Cast Iron Slotted Weights)  are the most common hanger weights we sell and are suitable for testing and calibration in the 5 N / 500 g up to 200 N / 20 kg.

Cast Iron Slotted Weight Hangers:

Cast Iron Slotted Weights are typically used with a hanger that also has its weight calibrated so the hanger can be used as part of the overall weight under test. Weight hangers are available in a variety of lengths and weight capacities. Hangers are calibrated to a mass value, and also have a capacity of how much weight can be loaded onto them.

Calibration Weight Certification:

You will normally need a calibration certificate to satisfy, if the tests that you do are on equipment that can effect the quality of your product and you are audited by an outside organization. Our Calibration Laboratory is NABL accredited in accordance with the standard ISO/IEC 17025 : 2017, So you can be satisfied with the quality and accuracy of the Cast Iron Newton Slotted Weights and Hangers.

Construction and General Shape:

Cast Iron Slotted Weights have adjusting cavities. Each weight has its nominal value cast into the topside of the weight. Weights are protected by a durable coat of paint to protect the casting from rusting.

Click here to enquire about Cast Iron slotted Weights and Hanger:

http://www.slotterweight.com

Newton Weights

A newton is defined as 1 kg⋅m/s2 (it is a derived unit which is defined in terms of the SI base units). One newton is therefore the force needed to accelerate one kilogram of mass at the rate of one metre per second squared in the direction of the applied force. The units “metre per second squared” can be understood as a change in velocity per time, i.e. an increase of velocity by 1 metre per second every second.

In 1946, Conférence Générale des Poids et Mesures (CGPM) Resolution 2 standardized the unit of force in the MKS system of units to be the amount needed to accelerate 1 kilogram of mass at the rate of 1 metre per second squared. In 1948, the 9th CGPM Resolution 7 adopted the name newton for this force. The MKS system then became the blueprint for today’s SI system of units. The newton thus became the standard unit of force in the International System of Units.

The newton is named after Isaac Newton. As with every SI unit named for a person, its symbol starts with an upper case letter (N), but when written in full it follows the rules for capitalisation of a common noun; i.e., “newton” becomes capitalised at the beginning of a sentence and in titles, but is otherwise in lower case.

In more formal terms, Newton’s second law of motion states that the force exerted on an object is directly proportional to the acceleration hence acquired by that object, namely: F = m a , {displaystyle F=ma,}

where m {\displaystyle m} m represents the mass of the object undergoing an acceleration a {\displaystyle a} a. As a result, the newton may be defined in terms of kilograms ( kg {\displaystyle {\text{kg}}} {\displaystyle {\text{kg}}}), metres ( m {\displaystyle {\text{m}}} {\displaystyle {\text{m}}}), and seconds ( s {\displaystyle {\text{s}}} {\displaystyle {\text{s}}}) as 1   N = 1   kg ⋅ m s 2 . {\displaystyle 1 {\text{N}}=1\ {\frac {{\text{kg}}\cdot {\text{m}}}{{\text{s}}^{2}}}.} {\displaystyle 1\ {\text{N}}=1\ {\frac {{\text{kg}}\cdot {\text{m}}}{{\text{s}}^{2}}}.}

Examples

At average gravity on Earth (conventionally, g = 9.80665 m/s2), a kilogram mass exerts a force of about 9.8 newtons. An average-sized apple exerts about one newton of force, which we measure as the apple’s weight. 1 N = 0.10197 kg × 9.80665 m/s2    (0.10197 kg = 101.97 g).

The weight of an average adult exerts a force of about 608 N. 608 N = 62 kg × 9.80665 m/s2 (where 62 kg is the world average adult mass).

To enquire about Newton Slotted Weights follow the link:

http://www.slotterweight.com/contact/

Metrication in Weighing & Measuring System in India

WEIGHTS play a vital role in the Society. Normally we use it to judge the cost of products while selling or buying. During the ancient period transactions of commodities were being made either through the “Exchange” or “Barter” system which failed to satisfy the need of a common man of the Society. It laid down the foundation of a system of weighment and measurement. But every social structure/Elaka (region) period gave rise to their own system throughout the whole world which could satisfy their local needs to some extent only but failed to cope up with inter-regional/ inter-state or international trade as the world was coming closer very fastly.

The French Scientists encouraged by the revolution; assigned themselves to the task of evolving a system using nature as model and natural phenomena as guide to discourage the national/regional susceptibilities, if any. The credit goes to Talleyrand, that in 1790, the French Constituent Assembly took the initiative and entrusted the uphill task of establishing a Weighing/Measuring unit/system which may have global acceptance.

After careful examination of various reports submitted by groups of leading scientists of that era, 1/10th million part of a quadrant of the earth’s meridian was adopted as the unit of length “The Metre”. The unit of mass was derived from this unit of length by defining a “Kilogram” as equal to the mass of water at its freezing point having a volume of a decimetre (1/10th of a metre) cube.

Based on the conclusions of aforesaid observations, two physical prototype Standards of Platinum one for ‘Metre’ and other for “Kilogram” were constructed and deposited in the Archives of the French Re public in 1799. Despite the fact that the “Metric System” was the most scientific and its fractions & multiples were based on decimal system, it could not get wide range acceptance by all the advanced countries due to their own socio-political reasons. Many learned scientists of France as well as other European Countries advocated and raised their voice in favour of a uniform measuring system based on “Metric System”, the system remain dormant for several years.

In 1870 the French Government took the initiative and organized a convention in Paris which was attended by 15 countries. In 1872 another convention was held with the participation of delegates from 30 countries, 11 of whom were from American continent. Finally on 20th May 1875 a “Convention du Metre” was signed by 18 countries. The signatory states not only bound themselves with the adoption of Metric system but agreed to form a permanent scientific body at Paris. Thus Bureau International des poidsetmeansures (BIPM) came into existence. So manifest were its advantages that by 1900 as many as 38 countries adopted this system in principle. This figure was doubled in the following fifty years.

Despite having all the positive aspect this “Metric System” could not be conceived and encouraged by the then “British Rulers” of India, rather they encouraged the “Zamindars” the local rulers to develop their own system of weighment and measurement. This was nothing but the famous “Divide & Rule” policy which kept these so called local rulers separate and discourage them coming on a common platform with a common uniform sense of understanding

But this phase could not last long. The interim Govt. adopted a resolution (Resolution No. 0-1-Std (4) 45 dt. 3rd Sept. 1946) which laid the foundation of National Standards Body. The purpose of this body was “to consider and recommend to Govt. of India National Standards for the measurement of length, weight, volume and energy”.

Indian Standard Institute started functioning in June 1947. Dr. Verman, the then Director of the Institute prepared a report in which he advised to adopt the Metric System and its fractions and multiples with Indian nomenclature. Just after independence a sample survey was con ducted which revealed that at least 150 different types of weight system were in use in different parts of the country Strange to note that most of these weights were having the same nomenclature but differ in actual weight markedly For example more than 100 types of “mounds” were in use ranging from 280 “tolas” to 8320 “tolas” a piece in Weight as compared to the standard mound of 3200 tolas. This system was traditional bound and not only exploiting the illiterate people but also encouraging the way to certain known malpractices. For instance, while buying the products from the producers they use the “Seer/mound” of higher weight value where as a lower weight value of Seer/mound were used while delivering these things to the consumers. In both the cases the powerful “Trader body” was benefited. It was felt by our national leaders that unless an uniform scientific system of weighment  & measurement is adopted the interest of the producers as well as consumers cannot be fully protected which was essential for the sound economic growth of the society and the country as a whole.

To implement the uphill task for introducing a systematic and uniform way of weighment and measurement, a Central Metric Committee was constituted under the chairmanship of Union Ministry of Commerce and Industry with several Central Govt. dept., State Govt. Scientists Technocrats, representatives from trade and industry as well as ordinary consumers as its members

After several meetings, marathon discussion and taking several aspects and arguments of different participants in consideration, the “Metric System” came into effect. A resolution was passed by both the houses of Parliament. On 28th December, 1956, it got consent of the President of India with the remarks that “An Uniform System of Weighing & Measuring in metric be introduced throughout all the states and union territories of India”

The Indian Standards Institute was entrusted to prepare the Standards of Weights & Measures & the Indian Weights & Measures Act 1956 was promulgated with the following preamble

i) To use an uniform system of Weights &Measures.

ii) To make greater order and efficiency in economic management like industrial production, trade and even in running a household.

ii) To fully protect the interest of producers and consumers.

iv) To develop trade with other countries of world.

v) To put the country on the map of matriculation in the world.

A sufficient number of enforcing officers were recruited and trained at ILM, as per provisions of the Act for better and uniform implementation of Metric system.

We are Manufacturer- Exporter of Standard Weights, Roller Weights, Cylindrical Weights, Slotted Weights, Test Weights ranging from 1 mg to 1000 kg in all accuracy classes.

Contact us here: http://www.slotterweight.com/contact/

Why Calibration and adjustment are two separate things?

We calibrate a weighing device to understand how it behaves but we adjust the device to change its behavior. So to change the behavior of something firstly, we need to find how it is behaving by calibration and then we can adjust the same. It is important to find the device’s behavior before making any changes to its behavior. Therefore, it is reasonable and common to calibrate a weighing device without adjusting it.

A relationship is developed between a known value (standard) and a measured value by the help of calibration.

Adjusting a balance means that you are intervening in the weighing system, to make sure that the display is set to show the correct nominal value. And Calibration, on the other hand you are testing whether the display is correct and documenting any deviation.

For all units of measurement, there are some standards established as the basis for a particular unit. In the context of weighing devices, standard come in the form of Test Weights. The Test Weight is only classified as checking equipment if it has relevant proof of accuracy. The Test Weight has a certified value and the weighing device is supposed to indicate a value of Test Weight once it is placed upon the weighing device’s receptor. This is how we understand the behavior of the weighing device by calibration using Test Weight of certified value.

We find a relationship between the certified value of Test Weight and the value indicated by the weighing device and finally we can also make analysis on the behavioral aspects of the weighing device.

Selection of appropriate Test Weight is very necessary for your balance. A balance can never be more accurate than the Test Weight used to adjust it, it depends on its tolerance. Accuracy of the Test Weight should correspond to the readout of the balance, rather than something better. SWPI’s Cast Iron Test Weights are intended for use in the Verification or Calibration of Weights and for use with weighing instruments of medium accuracy class or ordinary class. They are manufactured from high quality cast iron and are free of cracks and pit.

The proper selection of an appropriate Test Weights involve knowing their proper permissible error limit, which are already set according to the OIML standards according to their class. Test Weights manufacturing as per OIML Recommendation R-111 is our specialty. Shanker Wire Products Industries (SWPI) manufactures exclusively Test Weights since 1961.

The surface quality of the Test Weights also plays an important role in the calibration of the balance. The bottom surface of Test Weight should be perfectly levelled so that it touches the receptor in its totality. SWPI’s Test Weight are well known for its Test Weight with satisfactory surface quality which ensures the accurate calibration of the weighing device.

Adjustment is not calibration. You can calibrate a measurement device without adjusting it. Calibration is developing an understanding of a measurement device. Calibration should include the determination of the measurement uncertainty to enhance the understanding of the measuring device. 

To enquire about Calibration Test Weights follow the link:

http://www.slotterweight.com/contact/

Magazine: “Weights & The Society” Volume: 06 & Issue No.: 1

20kg Slotted Weight back side

Logo of SWPIMagazine: Weights & The Society

(Volume: 06  & Issue No.: 1)

Published by Shanker Wire Products Industries

         

GOLDEN JUBILEE CELEBRATIONS OF METRIC SYSTEM IN INDIA

“Legal Metrology – Achievements of India and what it can offer to others.”

Article by:

Sri P.A Krishnamurthy,

Former Director, Legal Metrology, Government of India.      

INTRODUCTION:

The field of ‘Legal Metrology’ or Weights and Measures’ as is known in the common parlance, is the field where measurements are regulated by Government laws for the benefit of all stakeholders. The main object of such regulation is to ensure standardized procedures for calibration acceptable to all stakeholders, transparency in the whole procedure, and accountability of the measurement results.    

THE LAWS OF LEGAL METROLOGY IN INDIA:

Regulation of Weights and Measures were implemented in the early stages of post-independence through the Standards of Weights and Measures Act, 1956, and the standards of Weights and Measures Enforcement Acts of the States and Union Territories. These Acts required the adoption of the metric systems in basic units of mass, length, and volume units in commercial transactions and ensuring verification of certain basic commercial weights and measures weighing and measuring instruments used in mass, length, and volume. The specification of the commercial weights and measures were prepared by the Metric Committee of the then Indian Standards Institution (BIS) and notified in the form of Rules under the Enforcement Act. The metrication and regulation of such rudimentary weights and measures were achieved fairly well by the dedicated enforcement agency throughout the county and in the process, fairly uniform procedures for the regulation of these measuring instruments were achieved with regard to the licensing policy of their manufacture, sale, and repair. Continue reading “Magazine: “Weights & The Society” Volume: 06 & Issue No.: 1″

How often do I have to calibrate my balance, and what are the risks of not calibrating?

A calibration certificate reports results at the time the calibration was performed. In many cases, the responsible person assumes that the calibration is valid for a year. This leads to the wrong conclusion that a calibration interval of one year is sufficient.

Ideally, calibration intervals are defined following a risk-based methodology, for example, what is the probability of something going wrong and how high is the impact? A high impact and high probability correspond to a high risk, which requires a shorter calibration interval. Otherwise, a low impact and a low probability result in a low risk, allowing intervals to be extended.

To forgo calibration is a high-risk strategy. Hidden costs and risks associated with the un-calibrated balance or scale could be much higher than the cost of calibration itself. Using non-calibrated equipment can lead to production problems such as

Unscheduled downtime

Inferior product quality

Process and audit issues

Product rework and recalls

Environmental changes can also lead to undetected drift or increasing random errors that degrade performance. Periodically scheduled calibration along with routine testing (see below) is the best way to reduce calibration-related risk.

To know more you can contact us: http://www.slotterweight.com/contact/

Manufacturer’s Preface…

Logo of SWPI

SWPI has been engaged in manufacturing exclusively Weights since 1961.

The scenario of the world is changing very rapidly due to revolutionary development in the field of Science & Technology. It has brought a marked change in the requirement of quality weights of various specifications, shapes, sizes, designs, accuracy class, etc.

Continue reading “Manufacturer’s Preface…”